\qquad Per: \qquad
\qquad

No Calculator

1. Convert 150° to radian measure.
2. Convert $\frac{4 \pi}{3}$ to degree measure.
3. Find the exact value of the following. Sketch the angle (in the correct quadrant) and label the special Δ. a. $\sin \left(-\frac{7 \pi}{6}\right)$
b. $\sec \frac{7 \pi}{4}$
c. $\cos \frac{80 \pi}{3}$
d. $\csc 10 \pi$
e. $\cot \frac{19 \pi}{2}$
f. $\csc \left(-\frac{21 \pi}{4}\right)$
4. Graph one cycle for each of the following and find the amplitude, vertical shift, period and phase shift.
a. $y=-3 \csc 2\left(x+\frac{\pi}{3}\right)+1$

Amplitude:
Vertical Shift:
Period:
Phase Shift:
b. $y=5 \tan \left(2 x+\frac{\pi}{4}\right)-2$

Amplitude:
Vertical Shift:
Period:
Phase Shift:
5. Name the following trig function using sine and cosine.

Sine:

6. Solve for all possible values within $[0,2 \pi]$. Show labeled triangles in correct quadrants.
a. $\sec \theta=\left(-\frac{2 \sqrt{3}}{3}\right)$
b. $\cot \theta=-\sqrt{3}$
7. The hottest day of the year in Santiago, Chile, on average, is January 7, when the average high temperature is $29^{\circ} \mathrm{C}$. (Jan. 7 is in the summer in Santiago). The coolest day of the year has an average temperature of $14^{\circ} \mathrm{C}$. Temperature over time varies sinusoidally. Use 365 days as the length of a year.
a. Draw one full cycle of the graph. Label.
b. Write an equation of the sinusoidal function.
8. Solve the following
a. $25^{7 x+22}=125$
b. $\log _{2} x-\log _{2}(x-3)=3$
9. Write $P(x)=x^{3}-1000$ as the product of linear factors
10. What are the roots of the polynomial
$P(x)=x^{4}-6 x^{3}-12 x^{2}+30 x+35$

