No Calculator

1. Convert 150° to radian measure.

2. Convert $\frac{4\pi}{3}$ to degree measure.

3. Find the exact value of the following. Sketch the angle (in the correct quadrant) and label the special Δ .

a. $\sin\left(-\frac{7\pi}{6}\right)$

b. $\sec \frac{7\pi}{4}$

Name:_

c. $\cos \frac{80\pi}{3}$

d. $\csc 10\pi$

e. $\cot \frac{19\pi}{2}$

f. $\csc\left(-\frac{21\pi}{4}\right)$

4. Graph one cycle for each of the following and find the amplitude, vertical shift, period and phase shift.

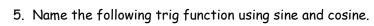
a.
$$y = -3\csc 2(x + \frac{\pi}{3}) + 1$$

Amplitude:

Vertical Shift:

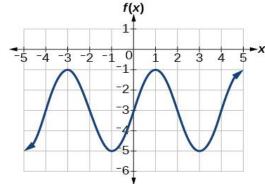
Period:

Phase Shift:


b.
$$y = 5\tan(2x + \frac{\pi}{4}) - 2$$

Amplitude:

Vertical Shift:


Period:

Phase Shift:

Cosine:

6. Solve for all possible values within $[0,2\pi]$. Show labeled triangles in correct quadrants.

a.
$$\sec \theta = \left(-\frac{2\sqrt{3}}{3}\right)$$

b.
$$\cot \theta = -\sqrt{3}$$

- 7. The hottest day of the year in Santiago, Chile, on average, is January 7, when the average high temperature is $29^{\circ}C$. (Jan. 7 is in the summer in Santiago). The coolest day of the year has an average temperature of $14^{\circ}C$. Temperature over time varies sinusoidally. Use 365 days as the length of a year.
- a. Draw one full cycle of the graph. Label.
- b. Write an equation of the sinusoidal function.

8. Solve the following

a.
$$25^{7x+22} = 125$$

b.
$$\log_2 x - \log_2 (x-3) = 3$$

- 9. Write $P(x) = x^3 1000$ as the product of linear factors
- 10. What are the roots of the polynomial $P(x) = x^4 6x^3 12x^2 + 30x + 35$